harissa.inference.network module#

Core functions for network inference using likelihood maximization

Functions#

grad_p1

Smoothed L1 penalization gradient.

grad_penalization

Penalization gradient of network parameters.

grad_theta

Objective gradient (one time point).

infer_network

Network inference procedure.

infer_proteins

Estimate y directly from data.

objective

Objective function to be minimized (one time point).

p1

Smoothed L1 penalization.

penalization

Penalization of network parameters.

harissa.inference.network.grad_p1(x, s)[source]#

Smoothed L1 penalization gradient.

harissa.inference.network.grad_penalization(theta, theta0, t)[source]#

Penalization gradient of network parameters.

harissa.inference.network.grad_theta(theta, theta0, x, y, a, c, d, l, t)[source]#

Objective gradient (one time point).

harissa.inference.network.infer_network(x, y, a, c, l, tol, verb)[source]#

Network inference procedure.

harissa.inference.network.infer_proteins(x, a)[source]#

Estimate y directly from data.

harissa.inference.network.objective(theta, theta0, x, y, a, c, d, l, t)[source]#

Objective function to be minimized (one time point).

harissa.inference.network.p1(x, s)[source]#

Smoothed L1 penalization.

harissa.inference.network.penalization(theta, theta0, t)[source]#

Penalization of network parameters.